0	D	Cada: 20EC0400	R2(
Q	2.P.		112	
F	Reg	s. No: and a second		
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTT	'UR	
		(AUTONOMOUS)		
		B.Tech II Year II Semester Regular Examinations October-2022		
		ELECTRONIC CIRCUIT ANALYSIS		
		(Electronics and Communication Engineering)		
Т	ime	:: 3 hours Max	. Mark	s: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)		
		UNIT-I		
1	a	Explain various methods used for coupling of multistage amplifiers with their	L2	6M
		frequency response.		
	b	Construct the block diagram of n-stage cascade amplifier and analyze its various	L2	6M
		parameters.		
		OR		
2	a	With diagram, deduce the expressions for Voltage gain, current gain, Input and	L2	6M
	ð,	ouput resistances of a Cascade amplifier.		o
	b	Short circuit CE current gain of a transistor is 25 at a frequency of 2MHz. If	L3	6M
		$f\beta = 200$ KHz, Calculate (1) fT (11) he (111) Find A1 at frequency of 10MHz and		
		TUUMHZ.		
				<
3	a	List the characteristics of negative feedback amplifiers.	L1	6M
	b	Analyze the effect of negative feedback on Output resistance for Voltage series	L4	6 M
		and Current series feedback amplifier.		
1	0	UK Show that the handwidth of an amplifier can be improved by using negative.	12	6M
4	a	feedback.	L	UIVI
	b	A voltage series negative feedback amplifier has a voltage gain without feedback	L3	6M
		of A = 500, input resistance Ri = $3k\Omega$, output resistance R0 = $20k\Omega$ and feedback		
		ratio, $\beta = 0.01$. Calculate the voltage gain Af, input resistance Rif, and output		
		resistance Rof of the amplifier.		

UNIT-III

5	a	Determine the condition for sustained oscillations for an RC phase shift Oscillator	L3	6M
		with necessary circuit diagrams.		

b Design an RC phase shift oscillator to generate 5 KHz sine wave with 20 V peak L3 6M to peak amplitude. Draw the designed circuit. Assume hfe = 150.

OR

- 6 a Explain the working of a Crystal oscillator and sketch its characteristics. L3 6M
 - **b** In a transistorized Hartley oscillator, the two inductances are 2 mH and 20 μ H L3 6M while the frequency is to be changed from 950 KHz to 2050 KHz. Calculate the range over which the capacitor is to be varied.

O.P. Code: 20EC0409

8 a

- a With neat diagram, explain Series fed directly coupled Class A Power Amplifier L3 7 **6M** and determine its maximum efficiency.
 - **b** A Class B push pull amplifier drives a load of 16Ω , connected to the secondary of L3 **6M** ideal transformer. The Vcc is 25V. If number of turns on primary is 200 and secondary is 50. Determine maximum power output, DC power input and efficiency.

OR

6M

L2

Compare different types of tuned amplifiers. **b** The bandwidth of a single tuned amplifier is 20 kHz. Determine the bandwidth if **L3 6M** three such stages are cascaded. Also calculate the bandwidth for four stages.

UNIT-V

a Deduce the expression for time period, T in Astable multivibrator. L1 **6M** 9 **b** Explain the operation of Emitter Coupled Monostable multivibrator. L2 **6M** OR

- 10 a Why triggering is needed for multivibrators? Explain a triggering method for L2 **6M** monostable multivibrator.
 - **b** Design and draw a saturated collector coupled monostable multivibrator for the L3 **6M** following specifications: VCC = 10 V, VBB = -5 V, pulse duration = 12ms, IC(ON)=2 mA and two NPN transistors with minimum hfe =100 and ICBO=0.

*** END ***